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Abstract 

The complex Cp2ZrMe(C6H4C~-CSiMe 3) (4) has been synthesized by reaction of CP2ZrMeCi and LiCoH4C-CSiMe 3 (~nerated in 
situ from reaction of nBuLi with BrCeH4C~CSiMe a at -95°C). Thermolysis of 4 in THF afforded an unsaturated, organometallic 
polymer [CpaZr(C6H~C=CSiMe3)], (7) in ca. 80% yield (Mw/M,  ,~ 4000/2000). Polymer 7 was investigated as a synthon for other 
unsaturated polymers, it reacts with hydrochloric acid to form a new phenylene-l,l-vinylene polymer [-C(=CHSiMe3)-I.4-C6H4-] ~ 
(8), and with sulfur dichloride to give poly(I-trimethylsilyl-2-benzo[b]thiophene) (9). Thermolysis of two similar compounds. 
CpaZrMe(C6H4C~CCH a) ($) and Cp2ZrMe(CoH4C6H4C-CSiMe 3) (6), did not give polymers. 

l~e)~'ords: Silicon; Zirconium; Zirconocene; Polymers; Benzene; Aikyne 

1. Introduction 

In recent years, considerable effort has been devoted 
to the synthesis of new conjugated polymers with poten° 
tial applications as electrically conducting materials in 
batteries, chemical sensors, light emitting diodes, and 
non-linear optical materials [I]. As such applications 
develop, it becomes more desirable to access specific 
charge-transporting capabilities, as defined by the poly° 
mer's band gap, ionization potential and/or electron 
affinity [ld, le]. A potentially useful strategy for fine- 
tuning these properties involves use of versatile 'syn- 
thetic intermediate' structures which may be derivatized 
in numerous ways. We have recently described such an 
approach, based on incorporation of zirconacyciopenta- 
diene units into the backbone of a conjugated polymer 
(Eq. (I), Ar ~-aromatic linker)[2]. Such polymers pos- 
sess reactive zirconacyclopentadiene structures which 
may be converted into a variety of other conjugated 
residues (butadienyl, phosphole, thiophene, aromatic, 

" Corresponding author. 
Dedicated to Professor Robert Corriu in recognition of his many 

contributions to organosilicon chemistry. 

0022-328X/96/$15.00 © 1996 Elsevier Science S.A. All rights reserved 
Pli S0022-328X(96)06353-X 

etc.) [2c,d]. The intermolecular coupling of diynes by 
zirconocene presumably occurs by formation of an in- 
termediate zirconacycloproi~nc complex, which under- 
goes condensation with a second equivalent of aikync to 
give the final zirconacyclot~ntadiene unit (Eq. (l))[3]. 
A related process involves coupling of a zirconoccne 
benzyne complex with an alkyne to produce mctallacyo 
ties [4]. Here we report attempts to utilize such zircoo 
nium-mediated benzyne-alkyne couplings in the syno 
thesis of new polymer structures. 

2. Results and discussion 

Syntheses of the monomer precursors are outlined in 
Scheme !. The palladium-catalyzed coupling of 4- 
iodobromobenzene or 4,4'-diiodobiphenyl with one 
equivalent of a terminal alkyne afforded the correspond- 

"OPal" 
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ing alkynylaryl derivatives RCmC-Ar-X (1-3) [5]. 
Addition of one equivalent of "BuLi to a THF solution 
of 1. 2 or 3 at -95°C produced the lithium reagents 
LiArC~CR, which are thermally unstable (decompos- 
ing at -78°C within a few hours) but can be generated 
and used in situ at -95°C for the preparation of 
complexes 4-6. These complexes are typically contami- 
nated by impurities (resulting from competing thermal 
decomposition of the lithium reagents), which are diffi- 
cult to remove completely by recrystallizations. As 
compound 4 is extremely soluble in pentane (ca. 2 g 
ml- ~), it can be isolated as an analytically pure, yellow- 
ish solid, In contrast, complexes $ and 6 have solubili- 
ties similar to those of the impurities, and so could not 
be isolated in greater than about 95% purity (by I H and 
t~C NMR spectroscopy). The spectroscopic data for 
compounds 4, $ and 6 are similar, and consistent with 
the structures given in Scheme ! [6]. 

Compounds 4-6  are Ifighly air- and light-sensitive. 
At room temperature, 5 and 6 are stable over extended 
periods, whereas 4 decomposes to a red solid by loss of 
methane (vide infra). Samples of $ and 6 (each contaim 
ing about 5% impurity) decompose at 85°C by elimina- 
tion of methane (by H NMR spectroscopy) to low 
molecular weight materials with M, < 1000 (by gel 
permeation chromatography (gpc); polystyrene stan- 
dards), Clean formation of higher molecular weight 
polymers may be inhibited by the impurities that are 
present in samples of these monomers. 

Thetvnolysis of 4 at 70°C results in a color change 
from pale yellow to deep red over ! h, and methane 
evolution is obsetwed as bubbles in the solution. Monio 
toting the reaction by *H NMR s~ctroscopy (~nzene~ 
do solution) revealed the rapid disappearance of 4 and 
formation of methane. Thermolysis of a concentrated 
TitF solution of 4 (ca, 2 M) at 85°C for 36 h afforded a 
ted polymer 7 in 83% yield ( M w / M ,  ~ 4000/2000: 
Scheme 2), Prolonged heating of the solution did not 

I==A~ X ~I~IWI~ g' M~C ~C ~ B ~  3, ~9% 

I 

Scheme !, 

SiMe3 

Cm"Za F A ,. 
Me -CH4 

C " ~ ~ S i M e 3 1  

t 

g 

Scheme 2. 

result in an increase in the molecular weight and, as 
expected, lowering the monomer concentration de- 
creased the molecular weight significantly ( M w / M  . = 

1600/1000 for a monomer concentration of 0.5 M). 
Similar results were obtained with cyclohexane solvent 
( M , ~ / M ,  = 3800/1900). 

Red polymer 7, which is air-sensitive and soluble in 
common organic solvents, was purified by fractionation 
(precipitation by addition of a benzene solution to an 
excess of pentane). The I H NMR spectrum of 7 consists 
of broad peaks at 0. i, 6. I, 6.6, and 7. ! ppm (integrated 
ratio 9" 10: ! '  2), which are assigned to the trimethylsi.- 
lyl, cyclopentadienyi, and aromatic groups, respectively 
[7a]. Hydrolysis of 7 with concentrated hydrochloric 
acid afforded the colorless, phenylene-l,l-vinylene 
polymer 8 (Mw/M, ~- 2700/1700) in 80% yield, along 
with a quantitative yield of zirconocene dichloride 
(S:henle 2) [7t,1. 

Reaction ot '7  with sulfur monochloride aftbrded a 
yellow polymer 9 in 50% yield (M,,/M,, ~ 2400/141~); 
Scheme 2), along with one equivalent of elemental 
sulfur (as measured by by thermal gravimetric analysis 
(TGA) ',atd elemental analysis). Eftbrts to separate sul° 
fur from this polymer by either solvent extraction or 
reaction with Hg failed, perhaps due to an interaction 
t~t~,een the elemental sulfur and the polymer chain. To 
over,:ome this problem, sulfur dichloride (containing 
20% of S=,CI,) was used as an alternative reagent to 
generate polymer 9, and this resulted in incorporation of 
less elemental sulfur (only 3.0% by TGA). The ~lt and 
~C{~I~I} NMR spectra are consistent with the structure 
given in Scheme 2 [7c]. The presence of the 
benzo[b]thiophen~ group in polymer 9 is supported by 
the ap~arance of infrared absorption bands at 1589, 
1542, 1510, 1461, 1405 and 1373 cm - J tS]. Note that 
the poly(2-benzo[b]~hiophene~ 9 is related to poly(i- 
benzo[blthiophene), which has been made by plasma- 
and electrochemical polymerizations [9,10]. 

"l-he UV=vis spectra for polymers 7, 8 and 9 are 
compared in Fig. 1. Owing to the cross-conjugated 
nature of these polymers, the observed band gaps are 
relatively high. Polymer 7 displays a A,,~ value of ca. 
260 nm, and the presence of weaker transitions at ca. 
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Fig. I. UV-vis spectra of polymers 7, 8 and 9. 

320 and 400 nm which may represent ligand-to-metal 
charge transfer transitions. The spectrum for polymer 9 
contains a major absorption at Am,,, = 288 nm, which is 
similar to the Area ~ value reported for benzo[b]thiophene 
(294 rim) [8]. Thermal analyses of polyrners 8 and 9 
revealed onset temperatures for decomposition at 425°C 
and 410°C respectively. 

In conclusion, we have synthesized a low molecular 
weight polymer (7) containing zirconacyclopentadiene 
units by thermolysis of the single-source precursor 
molecule Cp~,ZrMe(CoH4C~CSiMea) (4). This 
organometallic polymer has been dcrivatized to other 
he,,, polymers containing phenylene-l,l-vinylene and 
2~benzo[b]thiophene repeat units. We are currently in- 
vesti~ating other routes to polymers which utilize zir- 
conocene ~nzyne chemistry, in search of polymerizao 
tions that provide higher molecular weights and more 
conjugated structures. 
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